하루 1% 수익률 도전! 인공지능 주식 로봇 만들기, 2022/2/26(토) 오후 8시 개강

550,000

ZOOM을 사용하여 Online Live 방식으로 진행되는 강좌입니다. 

본 강의에서는 인간이 설계한 퀀트 트레이딩 전략을 알파고와 같은 인공지능 로봇에게 학습시켜 로봇이 스스로 최적의 타이밍을 포착하여 주식 거래를 할 수 있도록 파이썬 코딩을 통해 구현하는 방법을 실습을 통해 자세히 설명 드립니다. 강화학습에 대한 이론 설명과 코딩 전과정을 단계별로 차근차근 설명 드립니다.

수강신청 클릭!!

품절

카테고리:

설명

개강 2022년 2월 26(토)  오후 8시
일정 2022/2/26 ~ 3/26  매주 토요일 20:00-22:00
장소 Online Live (ZOOM 화상 강의)
강사 한창호, 콴트글로벌 대표 / 경제학박사
문의 crm@quantglobal.co.kr, 02.761.8090
기타 실습을 위한 노트북 컴퓨터 지참 필수
특징 수료증 발급, 소스코드 및 데이터 제공
사전교육 Python 입문 및 딥러닝 입문 강의자료(PPT, 소스코드) 제공
사후교육 강의 녹화 동영상 3개월간 제공. 강의 후 2일내 업로드됨


수강신청

수강 신청을 먼저 하시고 결제는 개강 확정 이후에 하시면 됩니다.

수강신청서(인공지능 주식로봇 만들기-2/26 개강)
수강목적
사이트를 알게된 경로


<WEEK 1> 강화학습 입문

I 강의 주제 강의 내용
1 인공지능 학습 알고리듬 지도학습/비지도학습/강화학습 정의 및 차이점
2 강화학습의 차별성 Observation/Reward, Exploit/Exploration, 지연된 보상
3 강화학습 구성요소1: Entity Agent, Environment
4 강화학습 구성요소 2: Communication Action, Reward, Observation

 

<WEEK 2> Markov decision process

II 강의 주제 강의 내용
1 Markov process Markov property 정의, 전이행렬, 상태 집합, 에피소드
2 Markov reward process Return 과 Reward 구별, 할인 계수, 에피소드의 수익
3 Markov Decision Process MRP에 Action space 추가
4 Policy RL에서 정책이 가지는 의미

 

<WEEK 3> Q-learning

III 강의 주제 강의 내용
1 Value of state Value of state 정의, value 와 policy 간의 관계
2 Bellman Equation 확정적인 경우/확률적인 경우 Bellman 방정식 정의
3 Value of Action Value of Action 정의, Value Iteration Algorithm
4 Q-learning 예제 Q-learning 알고리듬, R-matrix, Q-matrix

 

<WEEK 4> 트레이딩 로봇 구현 1

IV 강의 주제 강의 내용
1 Deep Q-learning DQN을 이용한 주식트레이딩 로봇 기본 구조 설계
2 트레이딩 전략 설계 MACD를 이용한 이용한 트레이딩 전략 설계
3 기술적 지표 입력변수로 사용할 각종 기술적 지표를 TA-Lib 이용하여 생성
4 주식 데이터 데이터 입수 및 전처리

 

<WEEK 5> 트레이딩 로봇 구현 2

V 강의 주제 강의 내용
1 트레이딩 로봇 세부 구조 코딩 Agent, DQN, Remember, Experience replay, Act
2 모형 훈련 Hyperparameter 값을 다양하게 조정하면서 최적의 결과가 도출되도록 모형 훈련
3 모형 성능 측정 테스터 데이터를 이용하여 confusion matrix 생성하여 모형 성능 측정
4 마무리 향후 개발 방향에 대한 조언

상품평

아직 상품평이 없습니다.

상품을 구매한 로그인 고객만 상품평을 남길 수 있습니다.